Meteor showers and space dust (S. Blanton)

Meteor Showers and Tons of Space Dust

(1) There are nearly a dozen “Meteor Shower” events each year. The QUADRANTID shower is on the night (Monday) of Jan 3rd-4th. When Earth passes through an old comet trail, we see particles of debris that fall into the atmosphere. There is absolutely no reason that other particles could not be simultaneously entrained in a ‘Ring Field’. Gravity works both possibilities simultaneously and shows no known partiality. According to various websites, ‘the USGS says at least 1,000 million grams, or roughly 1,000 tons of material enters the atmosphere every year and makes its way to Earth’s surface.’ This suggests a lot more material in orbit around Earth.

(2) Meteor strikes on the moon blast debris from the surface into space. With the right trajectory and velocity, some particles could be injected into an Earth Ring field. “On Dec. 14, 2006, we observed at least five Geminid meteors hitting the Moon,” reports Bill Cooke of NASA’s Meteoroid Environment Office in Huntsville, AL. Each impact caused an explosion ranging in power from 50 to 125 lbs of TNT and a flash of light as bright as a 7th-to-9th magnitude star. The explosions occurred while Earth and Moon were passing through a cloud of debris following near-Earth asteroid 3200 Phaethon. This happens every year in mid-December and gives rise to the annual Geminid meteor shower: Streaks of light fly across the sky as rocky chips of Phaethon hit Earth’s atmosphere.

(3) Tektites (from Greek τεκτός tektos, molten) are natural glass rocks up to a few centimeters in size, which most scientists argue were formed by the impact of large meteorites on Earth’s surface. Tektites are typically black or olive-green, and their shape varies from rounded to irregular.
Tektites are among the “driest” rocks, with an average water content of 0.005%. This is very unusual, as most if not all of the craters where tektites may have formed were underwater before impact. Also, partially melted zircons have been discovered inside a handful of tektites. This, along with the water content, suggests that the tektites were formed under phenomenal temperature and pressure not normally found on the surface of the Earth.
NASA scientist John A. O’Keefe published numerous papers between the 1950s and 1990s discussing the lunar, rare-earth, isotopic and other chemistries, and how they relate to tektite glass. Thus, some tektite researchers continue to strongly disagree with the popular terrestrial-impact theory; they suggest tektites are more likely … ejecta from the Moon.

(4) The whole Solar System can be compared with a gravitational dust bowl. Earth has a dust tail not because the planet itself is particularly dusty, but rather because the whole solar system is. Interplanetary space is littered with dusty fragments of comets and colliding asteroids. As Earth orbits through this dusty environment, a tail form akin to swaths of fallen leaves swirling up behind a street sweeper. “As Earth orbits the sun, it creates a sort of shell or depression that dust particles fall into, creating a thickening of dust – the tail – that Earth pulls along via gravity,” explains Werner. “In fact, the tail trails our planet all the way around the sun, forming a large dusty ring.”

Comment: In science, the hypothesis that there is ‘nothing-to-look-for’ is generally not acceptable until after a serious search has been done.

November 12, 2010: Did you know that the Earth has a dust tail? The Spitzer Space Telescope sailed right through it a few months ago, giving researchers a clear idea of what it looks like. Spitzer’s recent observations have helped astronomers map the structure of Earth’s dust tail and figure out what similar “tell-tale tails” attached to alien planets might look like.

If Earth has a ‘dust tail’, there is an increased probability that it has an “O’Keefe Ring”.

This entry was posted in What could an Earth ring be made of?. Bookmark the permalink.

One Response to Meteor showers and space dust (S. Blanton)

  1. lucyohancock says:

    Sankey – Would Quadrantid dust be likelier to turn into a ring in the equatorial plane, or the plane of the lunar 0rbit? – Lucy

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s